Difference between revisions of "Reports"

From SHARP Project Wiki
Jump to navigationJump to search
Line 7: Line 7:
== ARRA Reports ==
== ARRA Reports ==
:[[media:2011_1QTR_ARRA_SHARP_90TR0002.pdf|2011 QTR1]]
:[[media:2011_2QTR_ARRA_SHARP_90TR0002.pdf|2011 QTR 2]]
:[[media:2011_1QTR_ARRA_SHARP_90TR0002.pdf|2011 QTR 1]]
:[[media:2010_4QTR_90TR0002-01152011.pdf|2010 QTR 4]]
:[[media:2010_4QTR_90TR0002-01152011.pdf|2010 QTR 4]]
:[[media:2010_3QTR_90TR0002_07122010.pdf|2010 QTR 3]]
:[[media:2010_3QTR_90TR0002_07122010.pdf|2010 QTR 3]]

Revision as of 12:35, 22 October 2011

ONC & PAC Semi-Annual Reports

2011 Semi-Annual Progress Report (01/01/2011-06/30/2011)

Dr. Friedman Site Visit Presentation (09/03/2010)

2010 Progress Report (04/01/2010-12/31/2010)

ARRA Reports

2011 QTR 2
2011 QTR 1
2010 QTR 4
2010 QTR 3
2010 QTR 2
2010 QTR 1


Cited Literature

  1. Open Health Natural Language Processing (OHNLP) Consortium, www.ohnlp.org, Last Access Date: January 20, 2010
  2. clinical Text Analysis and Knowledge Extraction System (cTAKES), www.ohnlp.org, Last Access Date:January 20, 2010
  3. Clinical Element Model (CEM), www.clinicalelement.com, Last Access Date: January 20, 2010
  4. Chute C, Beck S, Fisk T, et al.: The Enterprise Data Trust at Mayo Clinic: A semantically integrated warehouse of biomedical data. . JAMIA in press
  5. Health Open Source Software Collaborative, https://mi.regenstrief.org/wiki/display/hoss/Health+Open+Source+Software+Collaborative;jsessionid=C5FA8654DE95870C84B9925C66082FC8, Last Access Date: January 20, 2010
  6. LexBig and LexEVS, https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexBig_and_LexEVS, Last Access Date: January 20, 2010
  7. National Center For Biomedical Ontology, http://www.bioontology.org, Last Access Date: January 20, 2010
  8. Pathak J, Solbrig HR, Buntrock JD, et al.: LexGrid: A Framework for Representing, Storing, and Querying Biomedical Terminologies from Simple to Sublime. Journal of Americal Medical Informatics Association 16:305-315, 2009
  9. MirthConnect, www.mirthcorp.com/community/mirth-connect, Last Access Date: January 20, 2010
  10. Institute (ANSI) of its Common Terminology Services (CTS): ANSI/HL7 CTS, V1-2005 Health Level Seven Standard: Common Terminology Services, Version 1, 2005
  11. International Organization for Standardization: ISO International Standard (IS) 27951 Common Terminology Services Version 1, 2009
  12. Noy NF, Shah NH, Whetzel PL, et al.: BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res 37:W170-173, 2009 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19483092
  13. Savova G, Masanz J, Ogren P, et al.: Mayo Clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, evaluation and applications. JAMIA, under review
  14. Chapman W, Dowling J, Hripcsak G: Evaluation of Training with an Annotation Schema for Manual Annotation of Clinical Conditions from Emergency Department Reports. Int J Med Inf 77:107-113, 2008
  15. Chapman W, Dowling J, Wagner M: Generating a reliable reference standard set for syndromic case classification. J Am Med Inform Assoc 12:618-629, 2005
  16. Coden A, Savova G, Sominsky I, et al.: Automatically extracting cancer disease characteristics from pathology reports into a cancer disease knowledge model. Journal of Biomedical Informatics 42 (2009):937-949, 2009, doi:10.1016/j.jbi.2008.12.005
  17. Ogren P, Savova G, Chute C: Constructing evaluation corpora for automated clinical named entity recognition, in LREC, Marakesh, Morrocco, 2008, pp 3143-3150, http://www.lrec-conf.org/proceedings/lrec2008/
  18. Savova G, Bethard S, Styler W, et al.: Towards temporal relation discovery from the clinical narrative, in AMIA, San Francisco, CA, 2009
  19. Uzuner Ö: Recognizing Obesity and Co-morbidities in Sparse Data. Journal of the American Medical Informatics Association. 16:561-570, 2009
  20. Uzuner Ö, Goldstein I, Luo Y, et al.: Identifying Patient Smoking Status from Medical Discharge Records. Journal of the American Medical Informatics Association 15:14-24, 2008
  21. Uzuner Ö, Luo T, Szolovits P: Evaluating the State-of-the-Art in Automatic De-identification. Journal of the American Medical Informatics Association 14:550-563, 2007
  22. Chen J, Schein A, Ungar L, et al.: An Empirical Study of the Behavior of Active Learning for Word Sense Disambiguation, in Human Language Technology conference - North American chapter of the Association for Computational Linguistics annual meeting (HLT-NAACL), New York, NY, 2006
  23. CLEAR-TK, http://code.google.com/p/cleartk/ Last Access Date:January 20, 1999
  24. Palmer M, Gildea D, Kingsbury P: The Proposition Bank: A Corpus Annotated with Semantic Roles. Computational Linguistics 31, 2005
  25. Pradhan S, Hacioglu K, Krugler V, et al.: Support vector learning for semantic argument classification. Machine Learning 60:11-39, 2005
  26. Hacioglu K, Pradhan S, Ward W, et al.: Semantic Role Labeling by Tagging Syntactic Chunks, in Proceedings of the Eighth Conference on Natural Language Learning (CONLL-2004), 2004
  27. Bethard S, Lu Z, Martin J, et al.: Semantic Role Labeling for Protein Transport Predicates. BMC Bioinformatics Jun 11:9:277, 2008
  28. Bethard S, Martin J, Klingenstein S: Finding Temporal Structure in Text: Machine Learning of Syntactic Temporal Relations. International Journal of Semantic Computing (IJSC) 1, 2007
  29. Chapman W, Bridewell W, Hanbury P, et al.: A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of Biomedical Informatics 34:301-310, 2001
  30. Harkema H, Thornblade T, Dowling J, et al.: ConText: An algorithm for determining negation, experiencer, and temporal status from clinical reports. J Biomed Inform 42:839-851, 2009
  31. Chapman W, Chu D, Dowling J: ConText: An algorithm for identifying contextual features from clinical text., in BioNLP Workshop of the Association for Computational Linguistics, Prague, Czech Republic, 2007, pp 81-88
  32. Christensen L, Harkema H, Irwin J, et al.: ONYX: A System for the Semantic Analysis of Clinical Text, in Proceedings of the BioNLP2009 Workshop of the ACL Conference, Denver, CO, 2009
  33. Aronsky D, Fiszman M, Chapman WW, et al.: Combining decision support methodologies to diagnose pneumonia. Proc AMIA Symp:12-16, 2001 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11825148
  34. He T: Coreference Resolution on Entities and Events for Hospital Discharge Summaries, in EECS, Cambridge, MA, MIT. M.Eng, 2007
  35. Sibanda T: Was the Patient Cured? Understanding Semantic Categories and Their Relationships in Patient Records, in EECS, Cambridge, MA, MIT, 2006
  36. Uzuner Ö, Mailoa J, Sibanda T: Semantic Relations for Problem-Oriented Medical Records, in Fall Symposium of the American Medical Informatics Association (AMIA 2009), San Francisco, CA, 2009, p 661
  37. Uzuner Ö, Zhang X, Sibanda T: Two Approaches to Assertion Classification, in Fall Symposium of the American Medical Informatics Association (AMIA 2008), Washington, DC, 2008, p 752
  38. Uzuner Ö, Zhang X, Sibanda T: Machine Learning and Rule-based Approaches to Assertion Classification. Journal of the American Medical Informatics Association 16:109-115, 2009, DOI 10.1197/jamia.M2950
  39. Unstructured Information Management Architecture (UIMA), http://incubator.apache.org/uima/ Last Access Date:January 20, 2010
  40. HL7, www.hl7.org/v3ballot/html/welcome/environment/index.htm, Last Access Date: January 20, 2010
  41. Poesio M, Vieira R: A corpus-based investigation of definite description use. Computational Linguistics 24:183-216, 1998
  42. Hripcsak G, Rothschild A: Agreement, the F-Measure, and Reliability in Information Retrieval. J American Medical Informatics Association 12:296-298, 2005
  43. Marcus M, Santorini B, Marcinkiewicz M: Building a large annotated corpus of english: The
  44. penn treebank. Computational Linguistics 19:313-330, 1994
  45. Kipper K, Korhonen A, Ryant N, et al.: Extensive Classifications of English verbs., in Proceedings of the 12th EURALEX International Congress., Turin, Italy, 2006
  46. Uzuner Ö, Sibanda T, Luo Y, et al.: A De-identifier for Medical Discharge Summaries. International Journal Artificial Intelligence in Medicine 42:13-35, 2008
  47. Sowa J: Conceptual graphs for a database inference. IBM Journal of Research and Development 20:336-357, 1976
  48. Sowa J: Conceptual structures: information processing in mind and machine. Reading, MA, 1984
  49. The eMERGE Network, https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page, Last Access Date: January 20, 2010
  50. CDISC, http://www.cdisc.org, Last Access Date: January 20, 2010
  51. Biomedical Research Integrated Domain Group (BRIDG), http://www.bridgmodel.org, Last Access Date: January 20, 2010
  52. Liu B, Hsu W, Ma Y: Integrating classification and association rule mining, in Intelligence AAfA, New York, 1998
  53. Thabtah F: A review of associative classification mining. Knowledge Engineering Review 22:37-65, 2007
  54. Wei W, Chute C: Identification of Type 2 Diabetes Mellitus Patients by SNOMED CT Concept Frequency. . AMIA Annual Symposium, 2009
  55. CDISC Share, http://www.cdisc.org/cdisc-share, Last Access Date: January 20, 2010
  56. LexWiki, https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexWiki, Last Access Date: January 21, 2010
  57. International Health Terminology Standards Development Organization (IHTSDO ), http://www.ihtsdo.org/fileadmin/user_upload/Docs_01/About_IHTSDO/Publications/CompositionalGrammar_20081223.pdf, Last Access Date: January 20, 2010
  58. Rector AL, Brandt S: Why do it the hard way? The case for an expressive description logic for SNOMED. J Am Med Inform Assoc 15:744-751, 2008, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18755993
  59. caBIG® Vocabulary Knowledge Center, https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/Main_Page. Last Access Date: January 21, 2010
  60. Agrawal R, Imielinkski T, Swami A: Mining Associations between Sets of Items in Large Databases. ACM SIGMOD Int'l Conf on Management of Data:Washington, DC, 1993.
  61. Witten I, Frank E: Data Mining: Practical Machine Learning Tools and Techniques with JAVA Implementations, Morgan Kaufmann Publishers, 2000
  62. Apache Open Source, http://incubator.apache.org/, Last Access Date: January 20, 2010
  63. Apache UIMA, http://incubator.apache.org/uima/, Last Access Date: January 20, 2010
  64. OASIS, http://www.oasis-open.org/news/oasis-news-2009-03-19.php, Last Access Date: January 20, 2010
  65. Text Analytics Tools and Runtime for IBM LanguageWare, http://www.alphaworks.ibm.com/tech/lrw, Last Access Date: January 20, 2010
  66. Open Health Natural Language Processing (OHNLP) Consortium, https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/OHNLP, Last Access Date: January 20, 2010
  67. U-Compare, http://u-compare.org/, Last Access Date: January 20, 2010
  68. Getting Started: UIMA Asynchronous Scaleout, http://incubator.apache.org/uima/doc-uimaas-what.html, Last Access Date: January 20, 2010
  69. “Question Answering” is technology's next grand challenge, http://www.research.ibm.com/deepqa/index.shtml, Last Access Date: January 20, 2010
  70. Rubin D: Inference and missing data. Biometrika 63:581-592, 1976,
  71. rJAVA, http://rosuda.org/rJava/ Last Access Date: January 21, 2010
  72. Melton LJ, 3rd: History of the Rochester Epidemiology Project. Mayo Clin Proc 71:266-274, 1996, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8594285
  73. Kurland LT, Molgaard CA: The patient record in epidemiology. Sci Am 245:54-63, 1981, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7027437
  74. Project Management Institute: A Guide to the Project Management Body of Knowledge (PMBOK ® Guide) (4th ed.). Newtown Square, PA Project Management Institute, Inc., 2008
  75. Blue Gene, http://www.research.ibm.com/bluegene. Last Access Date: January 21, 2010