Dependency Parsing and Semantic Role Labeling

Steven Bethard
for Jinho D. Choi
University of Colorado Boulder
Dependency-based SRL

• Semantic role labeling
 - Task of identifying arguments of each predicate and labeling them with semantic roles in relation to the predicate.

• Dependency-based semantic role labeling
 - Advantages over constituent-based semantic role labeling.
 • Dependency parsing is faster (2.29 milliseconds / sentence).
 • Dependency structure is more similar to predicate argument structure.
 - Labels headwords instead of phrases.
 • Still can recover the original semantic chunks for the most of time (Choi and Palmer, LAW 2010).
Dependency-based SRL

- Constituent-based vs. dependency-based SRL

He opened the door with his foot at ten

Diagram showing the dependency structure with labels for Agent, Theme, Instrument, and Temporal.
Dependency-based SRL

- Constituent-based vs. dependency-based SRL

He opened the door with his foot at ten.

ARG_0: He
ARG_1: the door
ARG_2: with his foot
SBJ: He
OBJ: the door
ADV: at
TMP: ten
Transition-based SRL

- Parsing states
 - \((\lambda_1, \lambda_2, p, \lambda_3, \lambda_4, A)\)
 - \(p\) - index of the current predicate candidate.
 - \(\lambda_1\) - indices of lefthand-side argument candidates.
 - \(\lambda_4\) - indices of righthand-side argument candidates.
 - \(\lambda_{2,3}\) - indices of processed tokens.
 - \(A\) - labeled arcs with semantic roles

- Initialization: \(([], [], 1, [], [2, ..., n], \emptyset)\)

- Termination: \((\lambda_1, \lambda_2, \emptyset, [], [], A)\)
Transition-based SRL

- Transitions
 - **No-Pred** - finds the next predicate candidate.
 - **No-Arc** ← - rejects the lefthand-side argument candidate.
 - **No-Arc** → - rejects the righthand-side argument candidate.
 - **Left-Arc** ← - accepts the lefthand-side argument candidate.
 - **Right-Arc** → - accepts the righthand-side argument candidate.
Features

- Baseline features
 - N-gram and binary features (similar to ones in Johansson and Nugues, EMNLP 2008).
 - Structural features.

Subcategorization of “wants”

Path from “John” to “buy”

Depth from “John” to “buy”

1 ↑ LCA ↓ 2
Features

• Dynamic features
 - Derived from previously identified arguments.
 - Previously identified argument label of w_{arg}.
 - Label of the very last predicted numbered argument of w_{pred}.
 - These features can narrow down the scope of expected arguments of w_{pred}.
Summary

• Introduced a transition-based SRL algorithm, showing near state-of-the-art results.
 - No need to design separate systems for argument identification and classification.
 - Make it easier to develop a joint-inference system between dependency parsing and semantic role labeling.

• Future work
 - Several techniques, designed to improve transition-based parsing, can be applied (e.g., dynamic programming, k-best ranking)
 - We can apply more features, such as clustering information, to improve labeling accuracy.