George Chute

Strategic Health IT Advanced Research Projects (SHARP)
Area 4: Secondary Use of EHR Data
Project Initiation
Thursday April 29th

PI: Christopher G Chute, MD DrPH

Agenda
- Introductions - 10 min
- Overview of Grant process & scope - 10 min
- Administrative Issues – 10 min
- Project Logistics – 15 min
- Project by Project – 40 min
- Within Area 4 Integration – 10 min
- Cross-Sharp Program Integration – 10 min
- Questions – 15 min

Introductions
- Agilex Technologies
- CDISC (Clinical Data Interchange Standards Consortium)
- Centerphase Solutions
- Deloitte
- Group Health, Seattle
- IBM Watson Research Labs
- University of Utah
- Harvard University
- Intermountain Healthcare
- Mayo Clinic
- Minnesota HIE
- MIT and i2b2
- SUNY and i2b2
- University of Pittsburgh
- University of Colorado

Program Advisory Committee
- Suzanne Bakken, RN DNSc, Columbia University
- C. David Hardison, PhD, VP SAIC
- Barbara A. Koenig, PhD, Bioethics, Mayo Clinic
- Issac Kohane, MD PhD, i2b2 Director, Harvard
- Marty LaVenture, PhD MPH, Minnesota Department of Health
- Dan Masys, MD, Chair, Biomedical Informatics, Vanderbilt University
- Mark A. Musen, MD PhD, Division Head BMIR, Stanford University
- Robert A. Rizza, MD, Executive Dean for Research, Mayo Clinic
- Nina Schwenk, MD, Vice Chair Board of Governors, Mayo Clinic
- Kent A. Spackman, MD PhD, Chief Terminologist, IHTSDO
- Tevfik Bedirhan Üstün, MD, Coordinator Classifications, WHO

SHARP Program: Background
- Funded by the Office of National Coordinator
- Support improvements in the quality, safety, and efficiency of healthcare
- Focus on solving current and future challenges that represent barriers to adoption and “meaningful use” of health IT
- Collaborative agreement between researchers, industry, healthcare providers, and other health IT stakeholders

SHARP Program: Focus Areas
- Area 1: Security of Health IT
 * Univ. of Illinois, Urbana Champaign
- Area 2: Patient-Centered Cognitive Support
 * Univ. of Texas Health Sciences Center
- Area 3: Healthcare Application & Network Platform Architectures
 * Harvard University
- Area 4: Secondary Use of EHR Data
 * Mayo Clinic
- Approx. $15 million per award (4 years)
Secondary Use of EHR Data: Research Areas

- Retrospectively and prospectively creating “in silico” cohorts of study controls
 - Approaches for the implementation of study and measures inclusion and exclusion criteria
- Methods for stratifying patients across categories of risk, demographics, and care treatments
- Strategies, heuristics, and methods to compensate for inconsistent and incomplete data
- Creating structured data from unstructured data using NLP to identify outcomes

Secondary Use of EHR Data: Themes & Projects

<table>
<thead>
<tr>
<th>Themes</th>
<th>Projects</th>
<th>Players</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Normalization</td>
<td>Clinical Data Normalization</td>
<td>IBM, Mayo, Utah, Agilex</td>
</tr>
<tr>
<td>Natural Language Processing (NLP)</td>
<td>Harvard, Group Health</td>
<td></td>
</tr>
<tr>
<td>High-Throughput Phenotyping</td>
<td>CDRI, LCA, Mayo</td>
<td></td>
</tr>
<tr>
<td>UIMA and Scaling Capacity</td>
<td>IBM, Mayo</td>
<td></td>
</tr>
<tr>
<td>Data Quality</td>
<td>Mayo, Utah</td>
<td></td>
</tr>
<tr>
<td>Evaluation Framework</td>
<td>Agilex, MINN, Mayo, Utah</td>
<td></td>
</tr>
</tbody>
</table>

Administrative Issues

- Budget Closures
 - Final Budget & Budget Justifications due TODAY to Michelle Kvall/Jeremy Eckhoff
- Contract Process
 - Starting May 3, contract officer will be in contact
- Project Management Roles
 - Mayo Clinic – serve as coordinating center & project specific task/resource management
 - Deloitte – face-to-face facilitation

Program/Project Management

Logistics

- June 21/22 F2F
- Technology Infrastructure
- Project Lead Calls
- Project Team Telecons
- PAC role/schedule
- Quarterly Reports
- Semi-annual Reports
- Science & Substance

Area 4: More information...

http://informatics.mayo.edu/sharp
Clinical Data Normalization
Dr. Chute
Aims:
• Build generalizable data normalization pipeline
• Semantic normalization annotators involving LexEVS
• Establish a globally available resource for health terminologies and value sets
• Establish and expand modular library of normalization algorithms

Project 2: Clinical Natural Language Processing (cNLP)
29th April, 2010
Guergana Savova, PhD

Project II: Clinical Natural Language Processing (cNLP)
• Overarching goal
 • High-throughput phenotype extraction from clinical free text based on standards and the principle of interoperability
• Focus
 • Information extraction (IE): transformation of unstructured text into structured representations
 • Merging clinical data extracted from free text with structured data

Integration of Information
Fig. 1. Four Goals for Architecture & Standards

Data Normalization
• Informed by Project I
• University of Utah’s models for episodes of care (www.clinicalelement.com)
 • Series of encounters between patient and health care system during which a problem is addressed (complaints, diagnoses, lab results, chronic medical problems, associated symptoms, physical examination findings, treatment plans).
 • Detailed clinical data for each episode

Data Normalization (cntd.)
• College of American Pathologists (CAP) cancer protocols
 • Example: colon cancer template – procedure, tumor site, size, histology, grade, tumor extension, margins, lymph nodes
• Medication profile (RxNORM)
 • Medication, dosage, route, frequency, form, strength
• Other standards: LOINC, SNOMED-CT, NDF-RT, CPT-4
Phenotyping

- Project III
 - Common grammar that can represent the formal syntax and semantics of the phenotype extraction algorithms in the form of constraint statements with appropriate boolean and logic operations
 - "operation to remove an ovary using a laser:" 83152002|oophorectomy|: 260686004|method|=257820006|laser excision-action|, where 83152002, 260686004, and 257820006 are SNOMED-CT concept identifiers.

cNLP Specific Aim 1

- Clinical concept and event discovery from the clinical narrative
 1. defining a set of clinical events and a set of attributes to be discovered
 2. identifying standards to serve as templates for attribute/value pairs
 3. creating a "gold standard" through the development of annotation schema, guidelines, and annotation flow, and evaluating the quality of the gold standard
 4. identifying relevant controlled vocabularies and ontologies for broad clinical event coverage
 5. methodological support for a broad array of clinical event discovery and template population
 6. extending Mayo Clinic’s clinical Text Analysis and Knowledge Extraction System (cTAKES) information model, and implementing best-practice solutions for clinical event discovery.

Project II Investigators

- David Carrell, Seattle Group Health
- Wendy Chapman, University of Pittsburgh
- Peter Haug, University of Utah
- Jim Martin, University of Colorado
- Martha Palmer, University of Colorado
- Guergana Savova, Children’s Hospital Boston
- Peter Szolovits, MIT
- Wayne Ward, University of Colorado
- Ozlem Uzuner, University of Albany

Project 3: High-Throughput Phenotyping

29th April, 2010

Jyoti Pathak, PhD
Assistant Professor of Biomedical Informatics
Department of Health Sciences Research

The Big Question...

- The era of Genome-Wide Association Studies (GWAS) has arrived
 - Genotyping cost is asymptoting to free [Altman et al.]
 - Most (all?) published GWAS are done on carefully selected and uniformly characterized patient populations
- How “good” are EMRs (with inconsistencies and biases) as a source of phenotype?
EMR-based Phenotype Algorithms

• Typical components
 • Billing and diagnoses codes
 • Procedure codes
 • Labs
 • Medications
 • Phenotype-specific co-variates (e.g., Demographics, Vitals, Smoking Status, CASI scores)

• Organized into inclusion and exclusion criteria

Iteratively refine case definitions through partial manual review to achieve ~PPV ≥ 95%
For controls, exclude all potentially overlapping syndromes and possible matches; iteratively refine such that ~NPV ≥ 98%

Example: Type 2 Diabetes (cases)

ICD-9-CM codes for Type 2 Diabetes

- Diabetes with other complication
- Diabetes with unspecified manifestation
- Diabetes with peripheral circulatory disorder
- Diabetes with neurological manifestations
- Diabetes with nephrotic manifestations
- Diabetes with renal manifestations
- Diabetes without mention of complication

Prescribed Medications for Type 2 Diabetes

- Have not been assigned ICD-9 codes for diabetes or diabetes-related condition
- Not prescribed insulin, pramlintide, or any diabetic medications or supplies
- Has a reported glucose and it is <110 mg/dl
- No reported hemoglobin A1C ≥ 6.0%
- No reported family history of T2D
Challenges

- Algorithm design
 - Non-trivial; requires significant expert involvement
 - Highly iterative process
 - Time-consuming manual chart reviews
 - Representation of "phenotypic logic"
- Data access and representation
 - Lack of unified vocabularies, data elements, and value sets
 - Questionable reliability of ICD & CPT codes (e.g., omit codes that don't pay well, billing the wrong code since it is easier to find)
 - Natural Language Processing needs
- And many more…

Semi-automatic Cohort Identification

- Project 3: Collaborators
 - CDISC (Clinical Data Interchange Standards Consortium)
 - Centerphase Solutions
 - IBM Watson Research Labs
 - Intermountain Healthcare
 - Mayo Clinic
 - University of Utah

UIMA exploitation

- Marshall Schor – IBM Research
 - Use UIMA as a unifying framework, leveraging ecosystem
 - Work with team leads to identify "fit" (or not) of UIMA into subprojects
 - Phenotyping and Data Quality, especially
 - Support UIMA and UIMA-AS use
 - Do UIMA-101 webinar or ?? for other teams
 - Consult on pipe line design / architectures / configuration
 - Support scaling, capacity flexibility
 - Develop and deploy virtual machine images that can dynamically scale in cloud computing environments
 - Develop integration / deployment tooling with goal of simplicity
 - Enabling widespread adoption of POC

Data Quality

- Dr. Bailey
 - Aims:
 - Refine metrics for data consistency
 - Deploy methods for missing or conflicting data resolution
 - Integrate methods into UIMA pipelines
 - Refine and enhance methods

Real-world evaluation framework

- Dr. Huff
 - We will iteratively test our normalization pipelines, including NLP where appropriate, against these normalized forms, and tabulate discordance.
 - Normalize retrospective data from the EMRs and compare it to normalized data that already exists in our data warehouses (Mayo Enterprise Data Trust).
 - Use cohort identification algorithms in both EMR data and EDW data.
 - Normalize the data against CEMs.
Real-world evaluation framework

- Integrating normalization and phenotyping algorithms into HIE data flows and NHIN Connect linkages;
- Validate data sent to or received from the UHIN network against CEM models;
- Use CEM models as the definition of payloads within NHIN Connect service calls;
- Use of NLP on document payloads that are already in use?
 - Questions
 - Data is not actually flowing in Utah yet. What is the status in Minnesota?
 - Who is communicating? Where should we try this out?
 - Is NHIN Connect in actual use in Minnesota’s HIE?

Questions

- Data is not actually flowing in Utah yet. What is the status in Minnesota?
- Who is communicating? Where should we try this out?
- Is NHIN Connect in actual use in Minnesota’s HIE?

Area 4 Integration

- Project Lead Teleconferences
- Face to Face
- Transparent / centralized documentation
- Project management support

Cross-Sharp Program Integration

- PI Face to Face
- Yearly Jamboree w/Area Leads (rotating host)
- Potential for cross integration telecons
- Documentation transparency
 - Sharps.org – Area 1
 - Sharpc.org – Area 2
 - TBD – Area 3
 - Informatics.mayo.edu/sharp – Area 4 (sharp’n)