A Standards-based Semantic Metadata Repository to Support EHR-driven Phenotype Authoring and Execution

Guoqian Jianga, Harold R. Solbriga, Richard Kiefera, Luke V. Rasmussenb, Huan Moc, Peter Speltzc, William K. Thompsonb, Joshua C. Dennyc, Christopher G. Chutee, Jyotishman Pathaka

aMayo Clinic College of Medicine, Rochester, MN, USA; b Northwestern University, Chicago, IL, USA; c Vanderbilt University, Nashville, TN, USA.

Abstract
The objective of the study is to describe our efforts in developing a standards-based semantic metadata repository for supporting electronic health record (EHR)-driven phenotype authoring and execution. Our system comprises three layers: 1) a semantic data element repository layer; 2) a semantic services layer; and 3) a phenotype application layer. In a prototype implementation, we developed the repository and services through integrating the data elements from both Quality Data Model (QDM) and HL7 Fast Healthcare Interoperability Resources (FHIR) models. We discuss the modeling challenges and the potential of our system to support EHR phenotype authoring and execution applications.

Keywords:
Metadata Repository; Clinical Phenotyping; Quality Data Model (QDM); HL7 FHIR.

Introduction
The Quality Data Model (QDM) is an information model developed by the National Quality Forum (NQF) and a promising candidate for representing EHR-driven phenotyping algorithms for clinical research [1]. In a previous study, we developed a Semantic Web-based framework that provides a standards-based, semantically annotated, machine-readable rendering of the QDM [2]. In this study, we extend the framework and develop a semantic metadata repository and associated Web services by integrating the data elements from HL7 FHIR models [3]. The purpose of the integration is to provide a more comprehensive coverage of data elements available for clinical phenotype applications.

System Architecture
Our system comprises three layers: 1) a semantic data element repository layer; 2) a semantic services layer; and 3) a phenotype application layer. In the repository layer, we leverage both W3C standards, such as Resource Description Framework (RDF) and Web Ontology Language (OWL), and the meta-data standard ISO 11179 [4] to describe the QDM reference model, data model elements and logic elements.

Prototype Implementation
In our previous study [2], we developed a QDM schema in OWL representing the QDM reference model with the notions of Data Model Element (including Category, Datatype, Attribute, ValueSet, etc.) and Logic Element (including Logic Operator, Function, Comparison Operator, Temporal Operator, etc). In this study, we extended the schema with the notions of HL7 FHIR Datatypes and Resources. The schema are designed as a natural extension of the ISO 11179 standard. We then populated the schema with data elements from HL7 FHIR models as QDM schema instances (Table 1). We also developed RESTful services on the top of the repository (https://github.com/PheMA/phema-mdr), being utilized by a phenotype authoring tool under active development.

Table 1. The number of data elements populated and examples
\begin{tabular}{|c|c|c|}
\hline
Category & QDM & HL7 FHIR & Examples (FHIR) \\
\hline
Datatype & 18 & 99 & Medication \\

Attribute & 76 & 1021 & Medication.kind \\

ValueSet & 528 & 180 & ValueSet \\

Logic Element & 53 & - & - \\
\hline
\end{tabular}

Conclusion
Our system provides a standards-based semantic infrastructure in enabling data element services to support phenotype authoring and execution. In future work, we plan to develop a standard interface mechanism with Clinical Information Modeling Initiative (CIMI)-compliant clinical models.

Acknowledgments
This work has been supported in part by funding from PhEMA (R01 GM105688), eMERGE (U01 HG006379, U01 HG006378 and U01 HG006388), and caCDE-QA (1U01CA180940-01A1).

References

Address for correspondence
Correspondence to Dr. Guoqian Jiang at jiang.guoqian@mayo.edu.